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QUANTIZATION AND PSEUDODIFFERENTIAL ANALYSIS
André Unterberger
University of Reims, France

The overused word “quantization” refers to a variety of activities originating from several
domains of mathematics or mathematical physics: quantum mechanics, representation theory
or, more generally, harmonic analysis, pseudodifferential analysis. It is our point of view that
the most-embracing vantage point is the last one: since we fully realize that this may set us
in a somewhat isolated position, we propose to argument all this with a variety of examples,
putting emphasis, primarily, on the so—called composition formulas.

This survey is meant to present ideas, not techniques: this is one of the reasons why we
have chosen, in all instances, to deal exclusively with the simplest case (claiming for general-
izations, whether these have already been worked out or not), as characterized, for instance,
in pseudodifferential analysis (resp. harmonic analysis, resp. modular form theory) by the
sole consideration of the dimension one (resp. the group SL(2,R), resp. the arithmetic group
SL(2,Z)).

In 1926, H.Wey] first introduced his celebrated symbolic calculus, a linear correspondence
from functions f = f(y,n) of two variables to operators Op(f ) acting on functions u of one
variable. The formula

©Op(Nu@) = w7t [ F(Tr,n) V() dyag (1)

had its source in the quantization problem from early quantum mechanics, which called for
the definition of a correspondence from classical observables to quantum observables; at the
same time, it paved the way for subsequent investigations in representation theory, as it made
it possible, on the example of the Heisenberg representation, to isolate some of the features
which, in the future, were to play in important role in general. Finally, it was also the first def-
inition of a pseudodifferential calculus — in this domain, the function f is called the symbol
of the operator Op(f)— and is mentioned as such in the foundational paper [4] of Kohn-
Nirenberg: actually, when rediscovered for the sake of its applications to partial differential
equations, pseudodifferential analysis, until at least the end of the seventies, relied on the use
of the so—called standard calculus (more about it in a moment) rather than the Weyl calculus.

Applications of pseudodifferential analysis to partial differential equations make up an
immense field: we shall have to ignore it completely, concentrating instead on some facts of
structure of the calculus, mostly those generally ignored or not understood. Pseudodifferen-
tial analysis starts with a study of the way, under the map Op, properties of the symbol are
transferred to properties of the operator: for instance (1], smooth symbols f with bounded
derivatives of all orders exactly correspond to operators which are bounded in L?(R), and
remain so after any number of commutations with operators taken from the pair Q, P of
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position and momentum operators. This gives a meaning to the sharp product (f, g) — f#g
of symbols, characterized by the equation Op(f#g) = Op(f) Op(g), an operation which will
be the subject of a greater part of the present exposition.

The best-known composition formula is probably Moyal’s expansion

(fl#fz)(w,£>=2(4—z'f;)"§ o (2)(2) A () (%) n@o, @
el

n>0

a series expansion of the closed “integral” formula

(fL#f2)(X) = {™H(fL(X +Y) (X +2)} (Y =Z=0), (3)
where L stands for the operator, on functions of (Y;Z) = ((y,m); (2,¢)), defined by
T i o?
’L7TL—(4’L7T) {—W-I-a—za_n} (4)

The latter formula is another way of writing

4 _dinry x g
(W#5)(X) = 3 [ 1) fa(2) e =X 2~X 0y 4z, )
a formula involving the symplectic form [, ] defined by

[(y’ 77)7 (Z, C)] = —yC +2n. (6)

The equation (2) on one hand, the pair of equations (3) and (5) on the other hand, have
not the same domain of validity. The first one is an ideal one when dealing with differential
operators (the symbols of which are polynomials with respect to the second variable), the
latter pair is more suitable when dealing with symbols with some degree of integrability.

The letter h stands for Planck’s constant, the number which isolates the irreducible uni-
tary representation 7, of Heisenberg’s group under consideration within the corresponding
series: we shall assume that the reader is familiar with all this, as well as with the concept
of covariance: for instance, the Weyl calculus is covariant under the Heisenberg representa-
tion on one side, the action by translations of R2 (the quotient of Heisenberg’s group by its
center) on the phase space R? on the other side. Of course, there is no genuinely greater
generality in letting h take values different from 1, since this is tantamount to making a
rescaling transformation in the phase space. Still, one is often interested, in partial differ-
ential equations, in problems involving small constants: this is the subject of the so—called
semi-classical analysis, in which the connection from analysis to the geometry of the phase
space (the correspondence principle in the terminology of the founding fathers of quantum
mechanics) is more imediately apparent.

One of the points we wish to stress is that the role of a “small” parameter, assumed to
play a role analogous to that of Planck’s constant, in general quantization theory, has been
overemphasized, and has led to serious misconceptions. In particular, despite some popular
beliefs, expansions of the composition of two symbols as asymptotic power series in terms
of one such parameter do not continue to hold in general. Next, there are in mathematical
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physics other small constants of interest (for instance ¢!), the role of which in quantum
mechanics is just as important as that of Planck’s constant. Finally, let us not forget that
Taylor expansions do not exhaust mathematical analysis: in the spectral decomposition of
self-adjoint operators, for instance, convergent integrals (with respect to the spectral param-
eter) and series have a more respectable role to play.

An alternative symbolic calculus of operators (still acting on functions of one variable) is
the standard, or convolution—first, calculus, defined by the equation

Opualf) wia) = [ " fe,6) P a(e) de, (7)

involving the Fourier transformation u ~ 4. We shall have to come back to it in a mo-
ment, as well as to the Wick-antiWick “calculus” (actually not really a calculus) defined as
follows. Taking h = 1 for simplicity (as explained above, this is no loss of generality), we use
Heisenberg’s representation to introduce the family (¢y)wec of coherent states on the real
line, where ¢g(t) = 21/% exp(—nt2) is the normalized ground state of the standard harmonic
oscillator Op (m(z?+¢2)) and, if w = z+i€, ¢y(t) = ¢0(t'— z)-exp{2in(t—%)¢} . The Wick
symbol of an operator A on functions defined on the real line is the function w — (¢y, | A ¢yy)
on the complex plane: an operator B is said to have an anti-Wick symbol g if the identity

Bu = / 9(w) (¢w | u) py dRew dImw
(o}

holds. Now, very few operators do have an antiWick symbol, and to find an antiWick symbol
from the Wick symbol of a given operator, one would have to solve a backwards heat equa-
tion: this is impossible in general, and disqualifies the Wick—antiWick calculus as a genuine
symbolic calculus: cf. [7] for a discussion.

We now come to situations in which some homogeneous space G /H of the group G =
SL(2,R) is to play the role of the phase space. With standard notations, one can take
H =K =250(2), or H= MA (the subgroup of G of diagonal matrices), or H = MN. In
connection with Kirillov’s method of orbits, it is natural to conceive the first two homoge-
neous spaces as being the natural choices for symbolic calculi of operators acting on spaces of
functions associated with the discrete (resp. the principal, or complementary) series of rep-
resentations of G'. So far as the nilpotent orbit G/MN is concerned, tradition has it that
one should associate it with the so—called metaplectic representation of the twofold cover of
G: in [11], it was found that, again, a series of representations (the higher—level metaplectic
representations), rather than an isolated one, had better be considered.

In the case when the phase space is G/K, one considers the holomorphic discrete series
of G or, more properly said, a prolongation of the projective discrete series of that group:
it is then the family D), where the parameter ), instead of being a positive integer, can
be any real number > —1 (the case when A = 0 corresponds to the Hardy space). When
A > 0, the Hilbert space H)y; has a reproducing kernel: consequently, there is a natural
family (u).eq/k of coherent states, which led Berezin [2, 3] to generalizing the Wick cal-
culus alluded to above; the symbols that take the place of the antiWick (when existing) and
Wick symbol of some operator are the contravariant and covariant symbols, in Berezin’s ter-
minology. The connecting map from the contravariant to the covariant symbol is an explicit
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function, in the spectral-theoretic sense, of the Laplace-Beltrami operator of the upper half-
plane G/K and, as shown by the well-known asymptotics of the Gamma, function on vertical
lines, is just as bad as the operator exp ﬁ expressing the link between the anti-Wick and
the Wick symbol in the flat case. Thus the Berezin calculus does not qualify as a genuine
symbolic calculus of operators in any sense suitable for pseudodifferential analysis. A better
choice is a generalization of the Weyl calculus, taking advantage, at each point z € G/K,
of the geodesic symmetry S, around z and of the associated unitary map o, = Dr+1(S,):
some phase factor, making this operator symmetric, has to be plugged in as well; replacing,
in the definition of the anti~-Wick (resp. Wick) symbol, the operator of orthogonal projection
on the coherent state at z by the operator o, one defines a new pair of symbols, the active
and passive ones. The link from the active to the passive symbol of some operator is explicit
as well [7], though this is no longer the case in the higher-rank situations, and behaves in
a much better way, analytically, than the corresponding map from the Berezin calculus: in-
deed, both this operator and its inverse are nice “pseudodifferential” operators on the phase
space, while the operator playing the role of the latter one is of infinite order in Berezin’s case.

As explained above, no composition formula can exist in the Berezin calculus: however,
there is an immediate integral formula expressing the covdriant symbol of the product of two
operators with given contravariant symbols f; and fo, of course not an associative opera-
tion: formally inverting the above correspondence and relying on Stirling’s formula, Berezin
also noticed the possibility of generalizing Moyal’s formula (2) to a point, interpreting A~
as some kind of analogue of a Planck’s constant. This is not going to be our point of view,
primarily in view of the fact that, in the actual composition formulas one can build (several
are possible), the composition of symbols always depends on A in such a way that the point
at infinity appears as an essential singularity, which makes expansions in terms of powers of
A1 of limited value at the most: this does not contradict the fact that Berezin’s expansion
is formally correct up to error terms which are O(A~%) for every N.

Let us quote the following generalization [8] of (3), insisting on the fact that all symbols
considered in the following formula are passive ones: f; # fo is the symbol of the composition
of two operators with symbols f; and f5 in the calculus associated with Dy+1 . Given a point
z in the hyperbolic half-plane, one may set g = sinhr cos@, p = sinhr sin@, denoting as r
the hyperbolic distance from ¢ to z, and as 0 the angle between the horizontal and the tangent
at the point ¢ to the hyperbolic line (a Euclidean circle) joining i to z: in this way one defines
a chart U; from R? to the half-plane; more generally, for every point = +i£, € > 0, one
defines a chart ¥, ;e from R? to the half-plane by the equation Votie(g,p) =€ Y(q,p)—iz.
On the other hand, on functions of four variables (¢, p’,q", p") = (P', P"), one defines the
operator L, just as in (4), by the equation

] . 62 32
im L = (4ir) 1{ o e o o9 00" }

One can now generalize (3), starting with the consideration of the set of charts (¥ztie) and
of the same operator L as before: only, instead of the exponential function e™hL , we must
now consider the function E)(—inL) with

o0
E\(z) = 4w / Ja(drt)e T Edt, 23>0, (8)
0
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in other words

_1\n A—n+1
B = YELIE ) ony

n! F()\ig—f—l)

o (_1)71 (27Tz))\+2n+1
— ) . (9)
sin A n! TA+n+1)IT(A+n+2)
Finally, the formula we have in mind (valid for nice symbols fi, f2: ¢f. [8]), to be compared
to (3), reads

(f1# f2) (@ + i€) = { E(—inL) ((f1 © Yayic) ® (fro Yorig)) } (P'=P"=0).  (10)

The equation (9) clearly shows that, as a function of A, the right-hand side of (10) has an
essential singularity at infinity, while simultaneously explaining why this singularity cannot
be observed in one neglects terms formally of the order O(A™°°): note that the series in
(9) is a convergent, not an asymptotic one. The paper just quoted also shows that, up to
a point that increases to infinity with A, the correspondence based on the use of, say, the
passive symbol, makes it possible to trace properties of continuity of the operators under
consideration through corresponding properties of their symbols: again, this is in striking
contrast with the Berezin calculus.

With a view towards building a symbolic calculus of operators acting on functions in the
Hilbert space of a representation taken from the principal series ;) , it is natural to use the
one-sheeted hyperboloid G/M A as a phase space. The same defining formula was reached
by Molchanov in [6] and ourselves in [9], though by two different means: in the first case,
as a generalization of Berezin’s quantization, in the second one as a generalization of the
standard calculus (7), only replacing the Fourier transformation by the intertwining operator
from ;) to m_;». The integral composition formula is immediate in this case, just as the
one from the Berezin calculus: but it does not suffer the same defects, as the link between
the two species of symbols to be considered this time is an invertible operator, even a unitary
one. There is a subtler composition formula, valid for a part of the calculus, that concerned
with an algebra generated by Hilbert—Schmidt operators which are inverses of differential
operators of the kind dm;3(X), X € gc. The corresponding space of symbols is exactly the
Hilbert sum of all eigenspaces of the basic invariant operator 00 on L?(G/M A) (the pseudo-
Laplacian) sitting discretely in the spectral decomposition of this operator. The formula can
be found in [9], and has two interesting features: first, it gives a convergent series expansion,
a situation one does not often come across, even in the flat case; next, the various terms are,
up to explicit constants, related to the celebrated Rankin—Cohen brackets, once transferred
as functions on the upper half-plane. It is important to note that, again, the coefficients are
given as products of Gamma factors, certainly not as powers of A7!.

Going back to the case of G/K , one may raise the question whether one could make a
kind of limiting calculus, as A — oo, available: note that this has nothing to do with the de-
formation point of view; on the contrary, we wish to get rid of A entirely. The representation
Dy+1 has a limit or, more properly said, a contraction, which is a representation not of the
group G = SL(2,R), but of the Poincaré group of smallest dimension 3. This Fuchs calculus
led to the construction of symbolic calculi compatible with the principles of special relativity,
to wit the so—called Klein—-Gordon and Dirac calculi, a very brief exposition of which may be
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found in [10]. The Klein-Gordon calculus can be made to depend on two constants (h and
¢), and its non-relativistic limit (i.e., its limit as ¢ — o) is just the Weyl calculus.

Finally, we wish to come back to the one-dimensional Weyl calculus, in order to show
that, even in that case, the already well-known composition formulas are far from being the
end of the story. The Moyal formula, for instance, relies on the use of Taylor expansions,
or of homogeneous polynomial symbols (possibly polynomial only with respect to the second
variable). Now, if you start from the consideration, for instance, of two symbols such as
fractional powers legﬂ and £ = of the symbol £(z,&) = 22 + €2, it is a very bad idea
to use Moyal’s formula to compute their composition f since, while repeated differentiation
improves the properties of the corresponding power of ¢ near infinity, it deteriorates them
near zero. The correct formula must, of necessity, use the continuous decomposition of
symbols into their homogeneous parts, and reads

f=/_:fAdA

1 vitvg—id=1 _1-ix

Hh o= 1(27T) 2 I

with

F( 1+1/1-+1-1u2—i)\) F( 141 —41/2+i)\) 1-\( 1—1/1—21/2-+i/\) I\( 1-1; —Z/z——i)\)
1-\( 1~|éu1 ) F( 1—;1/2 ) F( 1—21)\)

(11)

This was shown in [11, section 17]. It is a particular case of a general composition formula, in
the Weyl calculus, calling for the decomposition of the #-product of any two homogeneous
symbols as integral superpositions of homogeneous symbols. As explained in (loc. cit., [section
19]), this is the correct point of view when putting the emphasis, in the Weyl calculus, on the
covariance under the metaplectic representation rather than on that under the Heisenberg
representation.

This new point of view makes it possible to develop a calculus of operators with extremely
singular symbols, the consideration of which would be totally impossible with a more classical
point of view. In particular, one can consider symbols invariant under the linear action on
R? of the group SL(2,Z): of necessity, these automorphic symbols have to be distributions,
rather than functions: it was shown in loc.cit. that they make up a simultaneous realization
of all spaces of non-holomorphic modular forms (to be absolutely correct, of the more precise
Lax~Phillips space [5]). The trick consists in associating with an even distribution & on R2
the pair (ho, h1) of functions on the upper half-plane defined as follows: starting from the
pair (1%, 9') of the first two normalized eigenstates of the standard harmonic oscillator on
the line, associate with any point z = g.i (9 € SL(2,R)) of the upper half-plane the pair
of functions ¥} = Met(g) 1’ , where Met(g) is a metaplectic transformation above g (the
indeterminacy by a unitary phase factor is harmless); then, set h;(z) = (3% |Op(&)#}). If

iy (s 0 2
£ = (2in) (x8m+§8£+1)’

one then has the pair of equations

(a-3) (=~ @ilop(©)¥)) = i |Op(r? £2&) ), (12)
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a formula which reduces the study of the spectral decomposition of A (in particular in the
automorphic situation) to that of the decomposition of distributions on R? into their homo-
geneous components.

One can then develop a symbolic calculus of the operators with automorphic symbols, and
the composition formulas make use of all the main tools of the theory of non-holomorphic
modular forms: Maass eigenforms and Eisenstein series, L-series, Hecke operators, convo-
lution L-functions, triple products... We can only refer the interested reader to the quoted
book for this rather complicated quantization theory. Let us stress that, just like the auto-
morphic Laplacian, the automorphic Euler operator £ on SL(2,Z)\R? has both a continuous
and a discrete spectrum: the composition formulas involve both convergent series of cusp—
distributions and integral superpositions of Fisenstein distributions.
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